Refining and Urea Pretreatments to Enhance Biobleaching of Eucalyptus Kraft Pulp

نویسندگان

  • Luisa L. García-Fuentevilla
  • Raquel Martin-Sampedro
  • Pedro Domínguez
  • Juan C. Villar
  • María E. Eugenio
چکیده

Some pretreatments that swell and/or open the structure of wood fibers could increase the effectiveness of a biobleaching process, allowing for an industrial application. To this end, a chemical pretreatment (urea, U), a physical pretreatment (refining, R), and their combinations (RU and UR) were optimized to evaluate and compare their enhancement of the LE biobleaching sequence (laccase-mediator treatment plus alkali extraction). The urea pretreatment before biobleaching (ULE) provided the highest delignification (37.5%) and the highest increase in brightness (6.1 points % ISO). As expected, adding a refining process before or after the urea pretreatment increased paper strength. However, when the refining was applied after the urea pretreatment (URLE), the delignification was higher than that obtained after RULE. Thus, URLE provided a similar Kappa number and an increase of 97%, 149%, and 98% in the tensile, tear, and burst indexes, respectively, compared with ULE treatment, but it had a reduction of 2.8 points (% ISO) in brightness, caused by the action of refining. Therefore, depending on the final use of the paper (which can require high optical properties or high strength), either ULE or URLE would be the optimal sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biobleaching Effects of Crude Xylanase from Streptomyces griseorubens LH-3 on Eucalyptus Kraft Pulp

In this work, a xylanase-producing strain, Streptomyces griseorubens LH-3, was cultured, and the crude xylanase was prepared. Analysis of its enzymatic properties revealed that the crude xylanase possessed good thermal stability at temperatures below 60 o C, exhibited a wide pH range from 4.0 to 9.0, and was cellulase-free. This crude enzyme was used to treat eucalyptus kraft pulp, and the rele...

متن کامل

Evaluation of a New Laccase Produced by Streptomyces Ipomoea on Biobleaching and Ageing of Kraft Pulps

The aim of this work is to prove the suitability of a new alkaline and halotolerant bacterial laccase (SilA) produced by Streptomyces ipomoea CECT 3341 to enhance the conventional chemical bleaching process of an industrial eucalyptus kraft pulp. The laccase used for this study was a recombinant laccase obtained from cultures of E. coli BL21 (DE3) grown in LB liquid medium. The biobleaching exp...

متن کامل

Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335.

A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of...

متن کامل

Manganese Is Not Required for Biobleaching of Oxygen-Delignified Kraft Pulp by the White Rot Fungus Bjerkandera sp. Strain BOS55.

The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-de...

متن کامل

Application of a Novel Alkali-Tolerant Thermostable DyP-Type Peroxidase from Saccharomonospora viridis DSM 43017 in Biobleaching of Eucalyptus Kraft Pulp

Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013